Town Creek Marsh System: Hydrodynamic Analysis

Project Background

- Embankment breached in April 2007 (Patriot's Day Storm)
- Bikeway construction (Rail-trail)
- Embankment Rehabilitation
- 4. DER opportunity for habitat restoration and flood mitigation

Project Components

- 1. Construction of Rail-trail
 - Fay, Spofford, and Thorndike
- 2. Repair of embankment
 - PARE Corporation
 - Town of Salisbury
- 3. Hydrodynamic Assessment
 - Woods Hole Group
 - Division of Ecological Restoration

Hydrodynamic Project Goals

1. Habitat Restoration

- Improved tidal exchange
- Increased salinity levels
- Improved water quality
- Improved fish passage
- Adaptive Management Approach

Hydrodynamic Analysis

- Evaluation of second culvert (July, 2008)
- Updated and improved topography (December, 2010)
- Final Design Simulation (July, 2011)

2. Flood Mitigation

- Improved drainage
- Ability to limit high tides
- Ability to close gates at low tide for additional flood storage

Town Creek Estuary System

Existing Entrance

Tide Data and Rainfall

Date III ZUU!

Topographic Data

Basin Hypsometry

Lower Basin

• Upper Basin

Model Description

$$A(h_{marsh}) \frac{dh_{marsh}}{dt} = Q_{culvert} + Q_{gw} + Q_{rain} + Q_{leak}$$

- Calculates the tidal response in a marsh connected to the ocean by a partially submerged round pipe or box culvert
- The assumptions are:
 - Sea level in the marsh is independent of position
 - Flow through the culvert is described by a standard quadratic head-loss relationship
 - Flow depth varies linearly along the length of the pipe or culvert if the pipe or culvert is only partially full

Model Approach

- Model Calibration
- Existing Conditions Simulations
 - Normal Tidal Conditions (Baseline)
 - Storm Scenarios (Rainfall and Storm Surge)
- Alternatives Assessment
 - Culvert replacement and Second Culvert
 - Sluice gate openings
 - Normal Tides and Storms

Model Calibration

Model Calibration (4/5/2007 - 4/13/2007)

Model Bias

• Downstream Basin Calibration = -0.11 feet (1.2 inches)

Existing Conditions

Combination Sluice/Flap Tide Gate

Topographic Data

2.3 feet NAVD88 contour

Proposed Opening

LOWER BASIN	Mean High Water (ft NAVD88)	Mean Low Water (ft NAVD88)	Tidal Range (ft)
Existing Conditions	2.4	0.4	2.0
Proposed Conditions (3 ft opening)	2.2	-2.2	4.4

UPPER BASIN	Mean High Water (ft NAVD88)	Mean Low Water (ft NAVD88)	Tidal Range (ft)
Existing Conditions	2.0	0.9	1.1
Proposed Conditions (3 ft opening)	1.6	-0.8	2.4

Proposed Opening

Proposed Opening

Storms - Rainfall Events

Existing Conditions > 4 days to return to normal Proposed Conditions ~1 day to return to normal

Storms - Rainfall Event

Storms - Storm Surge Events

Storm Surge in Merrimack River = 8.5 feet NAVD88 3 foot sluice opening = 3.5 feet NAVD88

Conclusions

- 1. Recommend targeted 3 foot sluice opening at both culverts
 - Maximize ecological restoration
 - Minimize significant influence on upland infrastructure
 - Improve drainage ability during freshwater rain events
 - Mean sea level decrease
 - Improved tidal range and water quality
- 2. Adaptive management approach
 - Initially start with small sluice opening, monitor response, and increase opening to a maximum of 3 feet
 - If necessary, increased openings to alleviate freshwater discharge when necessary
 - Reduced opening during storm surge events

